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Abstract

Operational probabilistic forecasts of river discharge are essential for effective water
resources management. Many studies have addressed this topic using different ap-
proaches ranging from purely statistical black-box approaches to physically-based and
distributed modelling schemes employing data assimilation techniques. However, few5

studies have attempted to develop operational probabilistic forecasting approaches for
large and poorly gauged river basins. This study is funded by the European Space
Agency under the TIGER-NET project. The objective of TIGER-NET is to develop open-
source software tools to support integrated water resources management in Africa
and to facilitate the use of satellite earth observation data in water management. We10

present an operational probabilistic forecasting approach which uses public-domain
climate forcing data and a hydrologic–hydrodynamic model which is entirely based on
open-source software. Data assimilation techniques are used to inform the forecasts
with the latest available observations. Forecasts are produced in real time for lead times
of 0 to 7 days. The operational probabilistic forecasts are evaluated using a selection15

of performance statistics and indicators. The forecasting system delivers competitive
forecasts for the Kavango River, which are reliable and sharp. Results indicate that the
value of the forecasts is greatest for intermediate lead times between 4 and 7 days.

1 Introduction

Operational probabilistic hydrological modelling and river discharge forecasting is an20

active research topic in water resources engineering and applied hydrology (Pagano
et al., 2014). Sharp and reliable forecasts of river discharge are required over a range
of forecasting horizons for flood and drought management. A state of the art river dis-
charge forecasting system consists of a weather forecast or an ensemble of weather
forecasts (Cloke and Pappenberger, 2009), a hydrologic–hydrodynamic modelling sys-25

tem and a data assimilation approach to inform the forecasts with all available in situ
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and remote sensing observations. Alternatively, in the absence of resources, data and
computing power, simpler solutions can be implemented which disregard more and
more of the physics and rely on past observations to parameterize black-box type mod-
els such as, for instance, artificial neural networks (Maier et al., 2010).

Many studies have shown that operational hydrological models can benefit from the5

assimilation of in-situ or satellite remote sensing observations. Different techniques
and approaches have been presented (Liu et al., 2012). They differ both in terms of the
type of data that are assimilated to the models, the assimilation algorithms used and
in terms of the assimilation strategy, i.e. which model components, states and/or pa-
rameters are updated. Some hydrological data assimilation studies update the internal10

states of rainfall–runoff models (e.g. Clark et al., 2008; Pauwels and De Lannoy, 2009)
while other approaches focus the updating on the hydrodynamic parts of the model
(Biancamaria et al., 2011; Neal et al., 2009). Probably, the most popular algorithm
used in hydrologic data assimilation is the ensemble Kalman filter (e.g. Clark et al.,
2008). Alternatively, the particle filter (Moradkhani et al., 2005) can be used, which15

does not require the assumption of Gaussian model errors. Some studies use filtering
approaches where the gain is determined heuristically from offline simulations and then
used operationally in forecasting mode (Madsen and Skotner, 2005). As pointed out by
Liu et al. (2012), despite the large body of literature on hydrologic data assimilation,
few studies evaluate the benefit of data assimilation for actual forecasting and practical20

application of data assimilation by operational agencies is rare.
In many river basins the performance of operational hydrological modelling and fore-

casting is limited because in-situ observations of precipitation and river discharge are
scarce or unavailable. This is also the case for many of Africa’s large river basins which
are poorly gauged (e.g. Zambezi, Volta, Congo). Consistent, long-term and spatially25

resolved in-situ observations of precipitation and river discharge are unavailable for
large portions of Africa. Moreover, the number of operational meteorological stations
and river discharge stations has been decreasing consistently around the world since
the 1970s (Fekete and Vörösmarty, 2007; Peterson and Vose, 1997). Remote sensing
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techniques have the potential to fill critical data gaps in the observation of the global
hydrological cycle. All major components of the water balance, except river discharge,
can now be estimated based on various types of remote sensing data. However, the
available techniques are still limited by coarse spatial and temporal resolution as well
large and/or poorly understood error characteristics (Tang et al., 2009). From a man-5

agement perspective one of the most important components of the hydrological cycle
is river discharge. Extremely high flows in rivers cause flooding which can have severe
consequences in terms of fatalities and economic damage. Low flows cause conflicts in
the allocation of scarce water resources between economic sectors and/or the environ-
ment. Therefore, in many river basins there is a need for hydrological models to provide10

operational estimates of river discharge based on remotely sensed observations and
limited available in-situ measurements.

The TIGER-NET project addresses the demand for free, up-to-date and spatially
resolved water information for the African continent. The project is funded by the Euro-
pean Space Agency (ESA) and aims to support integrated water resources manage-15

ment in Africa by (i) providing access to ESA Earth observation (EO) data, (ii) devel-
oping an open-source Water Observation and Information System (WOIS) and (iii) im-
plementing capacity building actions in collaboration with African partner institutions
(Guzinski et al., 2014).

The WOIS includes a hydrological modelling component, which supports long-term20

scenario analysis (e.g. impact of climate change, deforestation etc.) as well as op-
erational probabilistic forecasting. The specific objective for the operational modelling
capability is to provide reliable and sharp probabilistic forecasts of river discharge over
time horizons of up to one week. In addition to hydrological modelling, WOIS includes
functionality for operational flood monitoring, basin characterization at high (∼ 30 m)25

and medium (∼ 1 km) spatial resolutions and derivation of other products requiring EO
data processing and analysis (Guzinski et al., 2014). It was designed for use in African
organizations, where budgetary and technical constraints often limit the use of EO data
for integrated water resources management. Therefore, WOIS is based purely on free,
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open-source software components and was created as an easy to use tool for both
capacity building and operational use. Among the partner institutions engaged in the
TIGER-NET project is the Namibian Ministry of Agriculture, Water and Forestry. The
Ministry has an interest in forecasting the discharge of the Kavango River.

Based on these requirements, this study has four specific objectives:5

1. Development of a robust and simple probabilistic river discharge forecasting sys-
tem for poorly gauged river basins, based solely on open source software and
public-domain data.

2. Informing the forecasting system with in-situ discharge observations in real time.

3. Operational demonstration of the system for the Kavango River case study.10

4. Comprehensive evaluation of the operational probabilistic forecasts using a se-
lection of performance statistics and indicators.

2 Materials and methods

2.1 Study area

The Kavango River originates in the highlands of central Angola and flows south to15

the border between Angola and Namibia. The Cuito River joins the Kavango River just
before the river enters into Namibia’s Caprivi Strip. It terminates in the Okavango Delta,
a large wetland system in Northern Botswana (Milzow et al., 2009). An overview of the
basin is provided in Fig. 1. The basin is located on the Southern fringes of the inter-
tropical convergence zone. A strong south-to-north precipitation gradient is observed.20

The climate is highly seasonal and large inter-annual variations are typical, which are
controlled by a number of climate time scales (McCarthy et al., 2000; Wolski et al.,
2014). The Kavango River is an important resource for all riparian countries and forms
the basis of many people’s livelihoods (Kgathi et al., 2006). While water scarcity and
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water allocation between economic sectors and the environment have been in focus
for some time, flood risk has recently become a major concern in Namibia because
the northern part of Namibia has experienced increased magnitude and frequency of
flooding events since 2008 (Wolski et al., 2014). Water managers need accurate and
reliable forecasting tools to deal with both floods and droughts.5

Three hydrological modelling efforts have been reported in the literature for the Ka-
vango River Basin. Folwell and Farqhuarson (2006) used the Global Water Availability
Assessment (GWAVA) model to assess climate change impacts in the basin. Hughes
et al. (2011, 2006) calibrated a Pitman model for the basin and were able to reproduce
in-situ observations satisfactorily. Milzow et al. (2011) developed a SWAT (Soil and Wa-10

ter Assessment Tool) model of the Kavango Basin and calibrated the model with water
levels from radar altimetry, soil moisture from Envisat-ASAR and total water storage
change from GRACE.

2.2 Hydrologic and hydrodynamic modelling

The modelling approach implemented in this study consists of a hydrologic (rainfall–15

runoff) model which is coupled to a simple hydrodynamic model for channel flow. A one-
way coupling between the two model compartments is implemented, i.e. once runoff
has entered the river channel, the water cannot move back into the land phase of the
hydrological cycle.

We use the well-known SWAT hydrological model, version 2009 (Gassman et al.,20

2005; Neitsch et al., 2011) for rainfall–runoff modelling. SWAT is a semi-distributed,
physically based hydrological model which operates at a daily time step. The river
basin is divided into a number of sub-basins. Each sub-basin is in turn divided into
hydrological response units (HRU), which are defined as portions of the sub-basin with
similar terrain slope, land use and soil type. The Kavango SWAT model consists of25

12 subbasins with outlets located at the confluences of major tributaries as well as at
in-situ discharge station locations (Fig. 1).
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The hydrodynamic model used in this study is a simple Muskingum routing scheme.
The river is divided into 12 primary individual river reaches. The primary reaches are
further sub-divided if required to meet the numerical stability criteria of the Muskingum
routing scheme (Chow et al., 1988). The hydrodynamic model state vector consists of
the simulated discharges in each individual reach. In the Muskingum routing scheme,5

the model operator propagating the discharge forward in time is linear, i.e. the simulated
discharges at time step t+1 are a linear function of the simulated discharges at time
step t and the runoff forcings at time steps t and t+1:

qt+1 = Aqt +Br t +Cr t+1. (1)

In this equation, q is the vector of simulated discharges and r is the vector of runoff10

forcings, A, B and C are linear operators which depend on the configuration of the
river channels and network connectivity and the superscripts indicate time steps. For
details on the implementation of the Muskingum routing scheme the reader is referred
to Chow et al. (1988) and Michailovsky et al. (2013).

2.3 Input data15

SWAT requires the following input datasets: elevation, land cover, soil type and climate
forcings. The elevation dataset is used for automatic watershed and river network de-
lineation as well as for the determination of terrain slope. We use the ACE2 (Altimeter
Corrected Elevation, version 2, Berry et al., 2010) global elevation dataset at a res-
olution of 30 arcseconds. The parameterization of vegetation processes in the SWAT20

model is based on the land cover input dataset. We use the USGS Global Land Cover
Characterization (GLCC) dataset, version 2.0 with a spatial resolution of 1 km (USGS,
2008). The soil dataset forms the basis for parameterizing soil hydraulic processes in
SWAT. We use the FAO/UNESCO digital soil map of the world and derived soil prop-
erties, revision 1 with a spatial resolution of 5 arcmin (FAO-Unesco, 1974). Look-up25

tables translating GLCC land cover classes and FAO/UNESCO soil types into SWAT
parameters have been developed by the WaterBase project (George and Leon, 2007).
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The model is forced with daily precipitation and daily minimum and maximum tem-
perature from the National Oceanic and Atmospheric Administration’s Global Forecast
System (NOAA-GFS) which provides up to seven days of forecast at a six hourly tem-
poral resolution and 0.5◦ spatial resolution (NOAA, 2014). For historical simulation pe-
riods and model calibration, forcing time series consisting of the 1 day ahead fore-5

casts are used. In operational mode, long-term forecasts are successively replaced
with short-term forecasts as time proceeds. In order to assess the performance of the
NOAA-GFS precipitation forecast for the Kavango region, the 1 day ahead forecasts
were compared to FEWS-RFE rainfall estimates (Herman et al., 1997). FEWS-RFE
was previously found to be one of the most accurate remote sensing precipitation prod-10

ucts for Africa (Milzow et al., 2011; Stisen and Sandholt, 2010).

2.4 Calibration and validation of the hydrologic–hydrodynamic model

Calibration and validation of the hydrologic–hydrodynamic model were performed
against observed in situ river discharge using a split-sample approach. The years
2005–2011 were used for calibration, while the years 2012–2014 served as valida-15

tion period. Data from two in-situ discharge stations (Rundu and Mohembo, see Fig. 1)
were available for calibration/validation. The objective function which was minimized in
the calibration was formulated as

φ = (1−NSE)2 +ME2 (2)

where NSE is the Nash–Sutcliffe model efficiency (Nash and Sutcliffe, 1970) and ME is20

the water balance error (mean error). This formulation ensured a reasonable trade-off
between fitting the observed hydrographs and matching the observed water balance of
the catchment. A sequential calibration strategy was implemented: first, the subcatch-
ments upstream of Rundu were calibrated using Rundu observations and subsequently
the subcatchments between Rundu and Mohembo were calibrated using Mohembo25

observations.
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Calibration was performed using the model-independent parameter estimation pro-
gramme PEST (Doherty et al., 2014). Because of the strongly non-linear response of
the SWAT rainfall–runoff model, global search strategies are the preferred option for
calibration of SWAT models (Arnold et al., 2012). We use the shuffled complex evo-
lution (SCE) algorithm (Duan et al., 1992) which performs a global search over the5

entire allowed parameter space. The SCE algorithm is included in the PEST package
(SCEUA_P).

The selection of calibration parameters was the result of an iterative procedure in-
cluding extensive sensitivity analysis and repeated trial model runs. The final selection
was based on the following principles: (i) spatial variation of vegetation and soil pa-10

rameters is determined by the input datasets and should be left unchanged during
calibration. The corresponding SWAT parameters were either not changed at all or
multiplied with a global factor. (ii) The water balance of the rainfall–runoff model should
be maintained. Therefore the fraction of the recharge entering the deep aquifer was
set to zero. (iii) SWAT groundwater parameters are highly uncertain a priori but at the15

same time very sensitive. Enough spatial variation in groundwater parameters must
be allowed in order to reproduce the various recession time scales in the observed
hydrographs. (iv) SWAT has two threshold values of the shallow groundwater storage,
one controlling the onset of baseflow and one controlling the onset of phreatic evapo-
transpiration. The absolute magnitudes of the two threshold values are less important20

because they mainly control the length of the required model warm-up period. How-
ever, the difference between these two threshold values has significant control over
the water balance of the catchment: if the baseflow threshold is below the phreatic ET
threshold, more water will leave the catchment as baseflow and less as actual ET and
vice versa. In order to reduce parameter correlation and non-uniqueness, the baseflow25

threshold was generally fixed at 100 mm in the Kavango SWAT model.
Table 1 provides an overview of the calibration parameters and their allowed ranges.

For the groundwater parameters, spatial variation was allowed between the Rundu and
Mohembo regions, the upstream and downstream catchments within each region and
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the high slope and low slope portions of the land surface. This resulted in a total number
of 19 calibration parameters for the Rundu region and 20 calibration parameters for the
Mohembo region. We chose 8 complexes in the SCE calibration run and the number
of complexes remained the same throughout the run. Both the number of parameter
sets in each complex and the number of evolution steps before complex shuffling were5

set to 39 and 41 for the Rundu and Mohembo regions respectively. The convergence
criterion was set to a relative improvement of the best objective function of 1 % over
10 shuffling loops. A total of 50 000 model runs were allowed, however the calibration
converged after 14 711 and 18 373 model runs for the Rundu and Mohembo regions
respectively. After completion of the SCE run, the evolution of the parameter values10

over the course of the shuffling loops was evaluated. All parameter values converged
to a stable solution away from the a priori parameter bounds.

2.5 Assimilation strategy

The objective of data assimilation is to combine, at each point in time, the model-based
estimate of the state of the system as well as the most recent observations of the15

state, to produce the best possible estimate of the current and future states, taking into
account the respective uncertainties of simulated states and observations. The assim-
ilation strategy chosen in this study consists of updating the simulated discharge in
the Muskingum routing model only, because the objective was to generate probabilistic
river discharge forecasts with lead times of up to 7 days. Updates of the rainfall–runoff20

model states would probably improve long-term forecasts significantly but may have
limited effect on forecasts with short lead times in large basins such as the Kavango
Basin. Moreover, updating the rainfall–runoff model will require ensemble-based assim-
ilation approaches. For the intended user group of the TIGER-NET products, simplicity
and efficiency are key criteria.25

Observed in-situ discharge at the station Rundu is assimilated to the model in the
operational runs. Because the Muskingum routing operator is linear and the measure-
ment operator is linear too, we can use the standard Kalman filter for state updating.
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The Kalman filter is the optimal sequential assimilation method for linear dynamics
(Kalman, 1960). If instead of river discharge, water level measurements from space-
borne or ground-based instruments are assimilated, the measurement operator be-
comes non-linear and the extended Kalman filter can be used (Michailovsky et al.,
2013). The reader is referred to the literature (e.g. Jazwinski, 1970) for a detailed dis-5

cussion of the Kalman filter equations.

2.6 Description of the model error

Runoff is assumed to be the dominant source of error in the routing model. While the
routing model parameters, which depend on reach geometries and Manning’s friction
factors, are uncertain, runoff uncertainty can be expected to be much more signifi-10

cant due to the error in the NOAA-GFS rainfall forcing as well as structural deficien-
cies and/or parameterization errors in the SWAT model. In order to find a reasonable
representation of the model error, the magnitude, auto-correlation and spatial cross-
correlation of the runoff error had to be assessed. No direct measurements of runoff are
available within the river basin. To derive an operational error model, we assume that15

magnitude and autocorrelation of the relative runoff error are the same as magnitude
and autocorrelation of the relative model residuals at the available in-situ discharge
stations:

wt =
(Qsim,t −Qobs,t)

Qobs,t
(3)

where wt is the relative model residual (–), Qsim,t is the modelled discharge at the in-20

situ discharge station at time step t and Qobs,t is the in-situ discharge as time step t.
The autocorrelation of the residuals was assumed to be represented by a first order
autoregressive (AR1) model:

wt = δwt−1 +εt (4)
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where δ is the AR1 parameter and ε is a sequence of white Gaussian noise with
a spatial covariance Q′. Due to the correlated meteorological inputs the runoff forcing
error was assumed to be spatially correlated between the various subcatchments of the
model. We assume that the spatial correlation of the runoff forcing error is equivalent
to the spatial correlation of the runoff forcing itself. The correlation matrix of the runoff5

inputs was computed and Q′ was set to:

Q′ = Cσ(ε)2 (5)

where C is the runoff correlation matrix and σ(ε)2 is the variance of the white noise
component of the AR1 model. The auto-correlated runoff error state was integrated in
the Kalman filter updating scheme by augmenting the model state vector with the corre-10

lated noise term (Jazwinski, 1970; Michailovsky et al., 2013). This ensures persistence
of assimilation benefits in time.

The major source of error in in-situ discharge observations is the rating curve, which
is used to transform readings of river stage into river discharge. Rating curves are
particularly unreliable for extreme flow rates and, depending on the channel character-15

istics, the rating curve changes over time and requires frequent updating. In the ab-
sence of detailed information on the in-situ measurement procedure, we assumed the
measurement error to be uncorrelated in time and proportional to the discharge. The
relative error was assumed to be 10 %, which is a typical value for in-situ discharge
derived from rating curves (Di Baldassarre, 2009) and comparable to other hydrologic20

data assimilation studies (e.g. Clark et al., 2008).

2.7 Operational forecasting and performance evaluation

Operational forecasts have been issued at the daily basis for the validation period and
supplied to Namibia’s Ministry of Agriculture Water and Forestry for web-based dissem-
ination. A set of criteria were used to assess the performance of the probabilistic river25

discharge forecasts. Performance assessment was done separately for the open loop
model and the 0 to 7 day forecasting horizons. The criteria assess the performance
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of the central model forecast, as well as the reliability and sharpness of the proba-
bilistic forecasts. The following criteria were used to assess the performance of the
central model forecast: Nash–Sutcliffe model efficiency (NSE), root-mean square error
(RMSE), mean error (ME) and persistence index. The persistence index (PI, Bennett
et al., 2013) is defined analogous to the NSE:5

PI =
1
n

∑n
i=1 (Qi −Qobs,i )

2 − 1
n

∑n
i=1 (Qi −Qlast)

2

− 1
n

∑n
i=1 (Qi −Qlast)2

(6)

where n is the number of forecasted observations, Q are the forecasts, Qobs are the
observations and Qlast is the latest available observation before the forecasted obser-
vation. While the NSE uses the average of the observations as the benchmark (i.e.
a forecast that performs as good as the long-term average of the available observa-10

tions scores an NSE of 0), the PI uses the last available observation as the benchmark
(i.e. a forecast that performs as good as the latest available observation scores a PI of
0).

Reliability and sharpness of the probabilistic forecasts were assessed with the cover-
age of the 95 % confidence interval (i.e. percentage of observations that fall within the15

predicted nominal 95 % confidence interval), the sharpness of the 95 % confidence in-
terval (width of predicted 95 % confidence interval), the Interval Skill Score (ISS) of the
95 % confidence interval as well as the continuous ranked probability score (CRPS).
The ISS is defined according to Gneiting and Raftery (2007) as:

ISSα =
n∑

i=1

issα(li ,ui ,Qobs,i )20

issα(l ,u,Qobs) =


(u− l ) if l < Qobs < u
(u− l )+2/α(l −x) if Qobs < l
(u− l )+2/α(x−u) if Qobs < u

(7)

11083

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/11071/2014/hessd-11-11071-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/11071/2014/hessd-11-11071-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 11071–11108, 2014

Operational river
discharge forecasting

in poorly gauged
basins: the Kavango

River case study

P. Bauer-Gottwein et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

where α is the level of the confidence interval (0.05 in our case), l is the lower and u
the upper bound of the confidence interval.

The CRPS is a verification tool for probabilistic forecasts and can be interpreted as
the area between the cumulative distribution function of the forecast and the cumulative
distribution function of the observation, which is a Heaviside step function. The CRPS5

thus compares the full distribution function of the forecast with the observation and not
only selected confidence intervals. For normally distributed forecasts, a closed-form
expression for the CRPS exists (Gneiting et al., 2004):

CRPS =
1
n

n∑
i=1

crps(Qobs,i ,Qi ,σi )

crps(Qobs,Q,σ) = σ
[
Qobs −Q

σ

(
2Φ

(
Qobs −Q

σ

)
−1

)
+2φ

(
Qobs −Q

σ

)
− 1
√
π

] (8)

10

where σ is the SD of the probabilistic forecast, Φ is the cumulative distribution function
and φ the probability density function of the standard normal distribution.

3 Results

3.1 Comparison of precipitation products

Comparison of the FEWS-RFE and NOAA-GFS precipitation products showed large15

deviations between the two products. Figure 2 shows a double mass plot for the aver-
age precipitation over the entire Kavango River catchment for the period 2005–2012.
Obviously, there is a significant bias and the timing of precipitation events is inconsis-
tent too, as evidenced by the wiggles in the double mass curve. The FEWS-RFE prod-
uct is based on both satellite observations and in-situ gauging stations, while NOAA-20

GFS is derived from a global weather model. Moreover, FEWS-RFE has been shown
to perform well in previous studies on the African continent (Milzow et al., 2011; Stisen

11084

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/11071/2014/hessd-11-11071-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/11071/2014/hessd-11-11071-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 11071–11108, 2014

Operational river
discharge forecasting

in poorly gauged
basins: the Kavango

River case study

P. Bauer-Gottwein et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

and Sandholt, 2010). We therefore assume that the FEWS-RFE product is closer to
the unknown true precipitation than NOAA-GFS and bias correct the NOAA-GFS data
to match the long-term average precipitation for both products. A spatially and tem-
porally constant precipitation correction factor of 0.67 was therefore used throughout
the study. Clearly, the quality of the precipitation forcing is a critical issue, which has5

significant control over the performance of the forecasting system. Within the TIGER-
NET framework, we are dependent on public domain datasets and NOAA-GFS was the
only free source of operational weather forecasts for the African continent available to
the project. Potentially, model performance could be improved if NOAA-GFS data was
corrected dynamically, for instance by continuously benchmarking it against real-time10

or near real-time precipitation products such as FEWS-RFE or TRMM-3B42 (Huffman
et al., 2007) for the recent past and estimating a time-variable bias correction. An even
better solution would be to merge NOAA-GFS data with in-situ precipitation data. How-
ever, no operational dataset of in-situ precipitation observations is available for this part
of Africa.15

3.2 Performance of the calibrated model

Calibration of the hydrologic–hydrodynamic modelling system with the SCE algorithm
was successful. Table 2 summarizes the performance of the calibrated model in the
calibration and validation periods for both in-situ river discharge stations (Rundu and
Mohembo). The model achieves reasonable NSE values at both stations in the calibra-20

tion period and water balance errors are small. Performance degrades slightly during
the validation period at Rundu. At Mohembo, NSE is significantly lower in the vali-
dation period than in the calibration period. One reason could be the low number of
observations, which primarily fall into the high-flow season where model performance
is generally worse than during the low-flow season. Both stations show much higher25

water balance errors in the validation period. The modelling system significantly under-
predicts observed discharge in the validation period. This behaviour can be explained
by the large inter-annual variations in precipitation input that can be observed for this
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region. While the years 2005–2008 were relatively dry, the following years were ex-
ceptionally wet in the region (Wolski et al., 2014). The calibrated SWAT model cannot
match these inter-annual dynamics and ends up over-predicting flow in the dry years
and under-predicting flow in the wet years. Figures 3 and 4 show comparisons of simu-
lated and observed hydrographs for both stations and both simulation periods. Table 15

provides an overview of the calibrated parameter values. All parameter values are phys-
ically reasonable and calibrated parameter values do not stick to the bounds of a-priori
parameter intervals.

Model residuals were analysed and tested for normality and autocorrelation. Fig-
ure 5 summarizes the results of the model error analysis. Figure 5a plots the relative10

error of the hydrologic–hydrodynamic model vs. the observed discharge. Obviously,
the relative error is not independent of discharge; it is higher for low discharge than
for high discharge. The Q–Q plot in Fig. 5b shows that the empirical distribution of
model errors significantly deviates from a normal distribution. The empirical distribu-
tion of the model errors is narrower than the normal distribution and a larger portion of15

the data is clustered around the mean. The correlogram in Fig. 5c shows highly signif-
icant auto-correlation of the model errors. Figure 5d shows the residual model errors
(ε) after application of the AR1 model (Eq. 4), plotted against the observed discharge.
This distribution looks more even than the distribution of the primary model residuals in
Fig. 5a. A test for normality using the Q–Q plot shows significant deviations and again20

a narrower distribution than the normal distribution (Fig. 5e). Temporal correlations
have been effectively removed from the model errors and no significant correlations
remain as shown in Fig. 5f. We conclude from this analysis that the relative error of the
hydrologic–hydrodynamic model can be reasonably represented with an AR1 model.
The time correlation of the AR1 model is δ = 0.9917 on the daily time step. The random25

error contribution is ε = 0.0438. As explained in the methods section, we assume that
the same AR1 model parameters can represent the relative error of the runoff forcing
and we use this result to parameterize the model error in the Kalman filter assimilation
scheme.
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3.3 Discharge forecasting and data assimilation

Table 3 reports the performance statistics for the probabilistic model runs. We report re-
sults for the open-loop run without assimilation, the assimilation run (“now-casting”) as
well as the 1–7 day ahead forecasts. We only assimilate data from the station Rundu,
because (i) no real-time observations are available for Mohembo and (ii) this enables us5

to assess the effect of upstream assimilation on a downstream station. The indicators
are reported for both in-situ stations and for the calibration and the validation period.
We are well aware that the observations in the calibration period have been used al-
ready for model calibration and are now used again for assimilation. Still, we feel that it
is useful to present the statistics for information. Figure 6 shows the open-loop and as-10

similation run for the station Rundu during calibration and validation periods. Figure 7
presents the 0–7 day ahead forecasting runs for the station Rundu in the validation
period. We first assess the performance of the probabilistic open-loop run. Generally,
the chosen error model seems to be appropriate. The forecasts produced by the open-
loop run are reliable; the coverage of the nominal 95 % confidence interval does not fall15

below 90 % at any of the stations during any of the periods. However, the open-loop
forecasts are not very sharp, as evidenced by the wide confidence intervals in Fig. 6.
This results in a relatively high ISS score.

The assimilation run is much sharper for all stations and periods and we do not ob-
serve a significant loss of reliability, except for Mohembo during the validation period.20

This can again be explained by the low number of observations at Mohembo dur-
ing the validation period as well as relative over-sampling of the high-flow period. ISS
scores are consequently much lower than for the open-loop run, which indicates mas-
sive improvement. The 1–7 day ahead forecast runs show degrading performance for
increasing lead times. However, even the 7 day ahead forecast generally has a lower25

ISS than the open-loop run, except for Rundu during the validation period. Figure 8
graphically summarizes the performance indicators. Clearly, the central forecast is bet-
ter for all lead times than the central run in the open-loop simulation. All three indicators
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(NSE, RMSE and ME) show significant improvement. Coverage decreases rapidly with
increasing lead time for the station Rundu but is more or less independent of lead time
for the station Mohembo. This can be explained by the routing time lag between the two
stations. Improvements due to assimilation of Rundu data travel down to Mohembo and
are still visible at this station after many days. For the station Rundu, increased sharp-5

ness is over-compensated by loss of reliability, which leads to increasing ISS scores
with increasing lead time. For the validation period, only the 0–3 ahead forecasts are
better than the open-loop run, if evaluated with the ISS score.

We generally observe weaker performance of the forecasting system after longer
periods without in-situ observations. If no in-situ data is available for some time, the10

model error increases. After observations become available again, large updates are
applied to the model states by the Kalman filter, which are then traveling downstream
in the river and can cause erratic response. Table 4 shows performance indicators of
the forecasting system for a portion of the validation period. In this dataset, the first few
observations that come in after extended periods without observations are removed. In15

total, about 15 % of the observations were discarded when computing the performance
indicators. For this reduced dataset, the ISS score for all forecasting horizons remains
well below the score of the open-loop simulation. For this dataset, we also computed
the persistence index and the CRPS score, which are graphically displayed in Fig. 9.
According to the CRPS score, the forecasts are far superior to the open-loop run for20

all forecasting horizons. The persistence index only evaluates the performance of the
central forecast and compares it to the performance of a deterministic forecast equal to
the last available observation. The results indicate that, for short lead times, the last ob-
servation outperforms the central forecast, while for longer lead times, the forecasting
system performs better than the last observation. The break-even point occurs some-25

where around a lead time of 4 days. However, it is important to note that the PI does
not assess the quality of probabilistic forecasts in terms of sharpness and reliability but
only takes the central forecast into account.
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4 Discussion

The presented approach for the generation of probabilistic river discharge forecasts
is simple and robust and designed to work in data-sparse and poorly gauged basins.
A key factor for the performance of the system is the rainfall forcing. While the NOAA-
GFS rainfall can produce reasonably reliable and sharp forecasts for the Kavango5

River, the product should be further compared against other operational precipitation
products. A promising avenue for future research may be dynamic bias correction using
other precipitation or soil moisture products. From Fig. 9, we conclude that extending
the forecast lead time beyond 7 days could add value to the system, because CRPS
scores are still well below the open-loop score at 7 day lead time and the persistence10

index indicates break-even at around 4 days. NOAA-GFS does actually provide fore-
casts up to 16 days into the future. However, the spatial resolution is reduced by a factor
of 2 for forecasting horizons beyond one week. It may nevertheless be valuable to ex-
plore the use of more long-term weather forecasts. To further improve the reliability and
sharpness of the forecasts, an ensemble of weather forecasts should be used to drive15

the forecasting system (Cloke and Pappenberger, 2009). However, such systems are
presently not available for Southern Africa.

As in other hydrologic data assimilation studies (e.g. Clark et al., 2008), parameteri-
zation of the model error is a fundamental issue for the performance of the assimilation
scheme. Generally, model error terms can be added to the forcings, the states, and20

the parameters of a model. Here, we assign all model error to the runoff forcing and
quantify magnitude and auto-correlation of the error based on the comparison of sim-
ulated and observed river discharge. Unlike other authors, we do not apply error terms
to the states and parameters of the routing model, because we assume that these error
contributions are minor compared to the runoff error. While this approach is robust and25

efficient, it clearly represents a strong simplification of reality. It is clear that the simple
Muskingum routing model has significant structural error, for instance due to the fact
that floodplains and surface water/groundwater interactions are not simulated.
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As is common for studies dealing with probabilistic river discharge forecasting, we
find that our probabilistic forecasts are over-reliable during low flow periods and under-
reliable during high-flow periods. This issue can be addressed by separating the total
runoff forcing generated by the SWAT model into its components, i.e. overland flow,
interflow and baseflow, and developing separate error representations for the various5

runoff components. However, given the sparse availability of in-situ observations in the
basins, it may be difficult to find robust parameters for these error representations.

In this study, focus has been on the final output of the modelling chain, i.e. river
discharge. However, SWAT simulates a multitude of intermediate states and fluxes
in the land phase of the hydrological cycle, which could be analysed and compared10

to observations, if such observations were available. There is an obvious opportu-
nity to inform the modelling system with other types of in-situ and remote sensing
observations such as radar altimetry, soil moisture and total water storage from time-
variable gravity (Milzow et al., 2011). If such data were to be formally assimilated to
the modelling system, an ensemble approach would have to be chosen because of15

the highly non-linear responses inherent in the SWAT model. Many studies have ad-
dressed ensemble-based streamflow forecasting with lumped-conceptual or distributed
hydrological models. Common issues in these studies are high computational demand,
time lags between the rainfall–runoff model states and streamflow response, and model
error parameterization (e.g. Clark et al., 2008).20

5 Conclusions

We have presented an operational probabilistic river discharge forecasting system for
poorly gauged basins which relies exclusively on public-domain, open-source software
and data. The forecasting system is specifically adapted to the conditions prevailing in
many African basins, such as weak in-situ monitoring infrastructure, budget constraints25

for operational monitoring and management as well as weak institutional capacity. We
demonstrated the performance of the forecasting system for the Kavango River and
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obtained encouraging results. Zero to 7 day ahead probabilistic forecasts produced
by the system are sharp and reliable. The results indicate that forecasting horizons
could be extended to more than seven days, if suitable weather forecasting products
can be made available. The system may also benefit from ingestion of other types
of in-situ or remotely sensed observations such as radar altimetry and soil moisture.5

The TIGER-NET project and its Water Observation and Information System (WOIS)
provide an ideal platform to combine remote sensing observations and hydrological
models to generate accurate estimates of hydrological states as well as sharp and
reliable forecasts for operational water resources management.
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through the TIGER-NET project. Real-time and historical in-situ observations for the station
Rundu were provided by Namibia’s Ministry of Agriculture Water and Forestry. Historical in-
situ observations for the station Mohembo were provided by Botswana’s Department of Water
Affairs.

References15

Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R.,
Santhi, C., Harmel, R. D., van Griensven, A., Van Liew, M. W., Kannan, N., and Jha, M. K.:
SWAT: model use, calibration, and validation, T. ASABE, 55, 1491–1508, 2012.

Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J.,
Marsili-Libelli, S., Newham, L. T. H., Norton, J. P., Perrin, C., Pierce, S. A., Robson, B.,20

Seppelt, R., Voinov, A. A., Fath, B. D., and Andreassian, V.: Characterising performance of
environmental models, Environ. Modell. Softw., 40, 1–20, doi:10.1016/j.envsoft.2012.09.011,
2013.

Berry, P. A. M., Smith, R. G., and Benveniste, J.: ACE2: the new global digital elevation model,
in: Gravity, Geoid and Earth Observation, edited by: Mertikas, S. P., IAG Symp., 135, 231–25

237, doi:10.1007/978-3-642-10634-7_30, 2010.

11091

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/11071/2014/hessd-11-11071-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/11071/2014/hessd-11-11071-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.envsoft.2012.09.011
http://dx.doi.org/10.1007/978-3-642-10634-7_30


HESSD
11, 11071–11108, 2014

Operational river
discharge forecasting

in poorly gauged
basins: the Kavango

River case study

P. Bauer-Gottwein et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Biancamaria, S., Durand, M., Andreadis, K. M., Bates, P. D., Boone, A., Mognard, N. M., Ro-
dríguez, E., Alsdorf, D. E., Lettenmaier, D. P., and Clark, E. A.: Assimilation of virtual wide
swath altimetry to improve Arctic river modeling, Remote Sens. Environ., 115, 373–381,
doi:10.1016/j.rse.2010.09.008, 2011.

Chow, V. T., Maidment, D. R., and Mays, L. W.: Applied Hydrology, Water Resources and Envi-5

ronmental Engineering, McGraw-Hill, New York, 1988.
Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt, R. P., Slater, A. G., Schmidt, J.,

and Uddstrom, M. J.: Hydrological data assimilation with the ensemble Kalman filter: use
of streamflow observations to update states in a distributed hydrological model, Adv. Water
Resour., 31, 1309–1324, doi:10.1016/j.advwatres.2008.06.005, 2008.10

Cloke, H. L. and Pappenberger, F.: Ensemble flood forecasting: a review, J. Hydrol., 375, 613–
626, doi:10.1016/j.jhydrol.2009.06.005, 2009.

Di Baldassarre, G. and Montanari, A.: Uncertainty in river discharge observations: a quantitative
analysis, Hydrol. Earth Syst. Sci., 13, 913–921, doi:10.5194/hess-13-913-2009, 2009.

Doherty, J., Muffels, C., Rumbaugh, J., and Tonkin, M.: PEST, Model Independent Parameter15

Estimation and Uncertainty Analysis, available at: http://www.pesthomepage.org/Home.php,
last access: 16 July 2014.

Duan, Q. Y., Sorooshian, S., and Gupta, V.: Effective and efficient global opti-
mization for conceptual rainfall–runoff models, Water Resour. Res., 28, 1015–1031,
doi:10.1029/91WR02985, 1992.20

FAO-Unesco: Soil Map of the World 1 : 5 000 000, Paris, 1974.
Fekete, B. M. and Vörösmarty, C. J.: The current status of global river discharge monitoring and

potential new technologies complementing traditional discharge measurements, in: IAHS-
AISH Publ. 309, Proceedings of the PUB Kick-off Meeting, Brasilia, Brazil, 2007.

Folwell, S. and Farqhuarson, F.: The impacts of climate change on water resources in the25

Okavango Basin, in: Climate Variability and Change – Hydrological Impacts, edited by: De-
muth, S., Gustard, A., Planos, E., Scatena, F., and Servat, E., IAHS-AISH Publ., 308, 382–
388, 2006.

Gassman, P. W., Reyes, M. R., Green, C. H., and Arnold, J. G.: SWAT peer-reviewed literature?:
a review, Hydrol. Process., 13, 1–17, 2005.30

George, C. and Leon, L. F.: WaterBase?: SWAT in an open source GIS, Open Hydrol. J., 1,
19–24, 2007.

11092

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/11071/2014/hessd-11-11071-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/11071/2014/hessd-11-11071-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.rse.2010.09.008
http://dx.doi.org/10.1016/j.advwatres.2008.06.005
http://dx.doi.org/10.1016/j.jhydrol.2009.06.005
http://dx.doi.org/10.5194/hess-13-913-2009
http://www.pesthomepage.org/Home.php
http://dx.doi.org/10.1029/91WR02985


HESSD
11, 11071–11108, 2014

Operational river
discharge forecasting

in poorly gauged
basins: the Kavango

River case study

P. Bauer-Gottwein et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Gneiting, T. and Raftery, A. E.: Strictly proper scoring rules, prediction, and estimation, J. Am.
Stat. Assoc., 102, 359–378, doi:10.1198/016214506000001437, 2007.

Gneiting, T., Westveld III, A. H., Raftery, A. E., and Goldman, T.: Calibrated Probabilistic Fore-
casting using Ensemble Model Output Statistics and Minimum CRPS Estimation*, Technical
Report no. 449, Department of Statistics, University of Washington, Seattle, Washington,5

2004.
Guzinski, R., Kass, S., Huber, S., Bauer-Gottwein, P., Jensen, I. H., Naeimi, V., Doubkova, M.,

Walli, A., and Tottrup, C.: A water observation and information system for integrated wa-
ter resource management in Africa, Remote Sens., 6, 7819–7839, doi:10.3390/rs60x000x,
2014.10

Herman, A., Kumar, V. B., Arkin, P. A., and Kousky, J. V.: Objectively determined 10-day African
rainfall estimates created for famine early warning systems, Int. J. Remote Sens., 18, 2147–
2159, doi:10.1080/014311697217800, 1997.

Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bow-
man, K. P., and Stocker, E. F.: The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-15

global, multiyear, combined-sensor precipitation estimates at fine scales, J. Hydrometeorol.,
8, 38–55, doi:10.1175/JHM560.1, 2007.

Hughes, D. A., Andersson, L., Wilk, J., and Savenije, H. H. G.: Regional calibration of the Pitman
model for the Okavango River, J. Hydrol., 331, 30–42, doi:10.1016/j.jhydrol.2006.04.047,
2006.20

Hughes, D. A., Kingston, D. G., and Todd, M. C.: Uncertainty in water resources availability
in the Okavango River Basin as a result of climate change, Hydrol. Earth Syst. Sci., 15,
931–941, doi:10.5194/hess-15-931-2011, 2011.

Jazwinski, A. H.: Stochastic Processes and Filtering Theory, Academic Press, New York, 1970.
Kalman, R. E.: A new approach to linear filtering and prediction problems, J. Basic Eng.-T.25

ASME, 82, 35–45, 1960.
Kgathi, D. L., Kniveton, D., Ringrose, S., Turton, A. R., Vanderpost, C. H. M., Lundqvist, J.,

and Seely, M.: The Okavango; a river supporting its people, environment and economic
development, J. Hydrol., 331, 3–17, doi:10.1016/j.jhydrol.2006.04.048, 2006.

11093

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/11071/2014/hessd-11-11071-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/11071/2014/hessd-11-11071-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1198/016214506000001437
http://dx.doi.org/10.3390/rs60x000x
http://dx.doi.org/10.1080/014311697217800
http://dx.doi.org/10.1175/JHM560.1
http://dx.doi.org/10.1016/j.jhydrol.2006.04.047
http://dx.doi.org/10.5194/hess-15-931-2011
http://dx.doi.org/10.1016/j.jhydrol.2006.04.048


HESSD
11, 11071–11108, 2014

Operational river
discharge forecasting

in poorly gauged
basins: the Kavango

River case study

P. Bauer-Gottwein et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Liu, Y., Weerts, A. H., Clark, M., Hendricks Franssen, H.-J., Kumar, S., Moradkhani, H., Seo, D.-
J., Schwanenberg, D., Smith, P., van Dijk, A. I. J. M., van Velzen, N., He, M., Lee, H.,
Noh, S. J., Rakovec, O., and Restrepo, P.: Advancing data assimilation in operational hydro-
logic forecasting: progresses, challenges, and emerging opportunities, Hydrol. Earth Syst.
Sci., 16, 3863–3887, doi:10.5194/hess-16-3863-2012, 2012.5

Madsen, H. and Skotner, C.: Adaptive state updating in real-time river flow forecast-
ing – a combined filtering and error forecasting procedure, J. Hydrol., 308, 302–312,
doi:10.1016/j.jhydrol.2004.10.030, 2005.

Maier, H. R., Jain, A., Dandy, G. C., and Sudheer, K. P.: Methods used for the de-
velopment of neural networks for the prediction of water resource variables in river10

systems: current status and future directions, Environ. Modell. Softw., 25, 891–909,
doi:10.1016/j.envsoft.2010.02.003, 2010.

McCarthy, T. S., Cooper, G. R. J., Tyson, P. D., and Ellery, W. N.: Seasonal flooding in the
Okavango Delta, Botswana – recent history and future prospects, S. Afr. J. Sci., 96, 25–33,
2000.15

Michailovsky, C. I., Milzow, C., and Bauer-Gottwein, P.: Assimilation of radar altimetry
to a routing model of the Brahmaputra River, Water Resour. Res., 49, 4807–4816,
doi:10.1002/wrcr.20345, 2013.

Milzow, C., Kgotlhang, L., Bauer-Gottwein, P., Meier, P., and Kinzelbach, W.: Regional review:
the hydrology of the Okavango Delta, Botswana – processes, data and modelling, Hydrogeol.20

J., 17, 1297–1328, doi:10.1007/s10040-009-0436-0, 2009.
Milzow, C., Krogh, P. E., and Bauer-Gottwein, P.: Combining satellite radar altimetry, SAR sur-

face soil moisture and GRACE total storage changes for hydrological model calibration in a
large poorly gauged catchment, Hydrol. Earth Syst. Sci., 15, 1729–1743, doi:10.5194/hess-
15-1729-2011, 2011.25

Moradkhani, H., Hsu, K.-L., Gupta, H., and Sorooshian, S.: Uncertainty assessment of hy-
drologic model states and parameters: sequential data assimilation using the particle filter,
Water Resour. Res., 41, W05012, doi:10.1029/2004WR003604, 2005.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I – a
discussion of principles, J. Hydrol., 10, 282–290, 1970.30

Neal, J., Schumann, G., Bates, P., Buytaert, W., Matgen, P., and Pappenberger, F.: A data
assimilation approach to discharge estimation from space, Hydrol. Process., 23, 3649, 3641–
3649, doi:10.1002/hyp.7518, 2009.

11094

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/11071/2014/hessd-11-11071-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/11071/2014/hessd-11-11071-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5194/hess-16-3863-2012
http://dx.doi.org/10.1016/j.jhydrol.2004.10.030
http://dx.doi.org/10.1016/j.envsoft.2010.02.003
http://dx.doi.org/10.1002/wrcr.20345
http://dx.doi.org/10.1007/s10040-009-0436-0
http://dx.doi.org/10.5194/hess-15-1729-2011
http://dx.doi.org/10.5194/hess-15-1729-2011
http://dx.doi.org/10.5194/hess-15-1729-2011
http://dx.doi.org/10.1029/2004WR003604
http://dx.doi.org/10.1002/hyp.7518


HESSD
11, 11071–11108, 2014

Operational river
discharge forecasting

in poorly gauged
basins: the Kavango

River case study

P. Bauer-Gottwein et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R.: Soil & Water Assessment Tool
Theoretical Documentation Version 2009, Texas Water Resources Institute Technical Report
No. 406, Texas A & M University System, College Station, Texas, 2011.

NOAA: GFS Global Forecast System, available at: http://www.emc.ncep.noaa.gov/index.php?
branch=GFS, last access: 16 July 2014.5

Pagano, T. C., Wood, A. W., Ramos, M.-H., Cloke, H. L., Pappenberger, F., Clark, M. P.,
Cranston, M., Kavetski, D., Mathevet, T., Sorooshian, S., and Verkade, J. S.: Challenges
of operational river forecasting, J. Hydrometeorol., 15, 1692–1707, doi:10.1175/JHM-D-13-
0188.1, 2014.

Pauwels, V. R. N. and De Lannoy, G. J. M.: Ensemble-based assimilation of discharge into10

rainfall–runoff models: a comparison of approaches to mapping observational information to
state space, Water Resour. Res., 45, W08428, doi:10.1029/2008WR007590, 2009.

Peterson, T. C. and Vose, R. S.: An overview of the global historical climatology net-
work temperature database, B. Am. Meteorol. Soc., 78, 2837–2849, doi:10.1175/1520-
0477(1997)078<2837:AOOTGH>2.0.CO;2, 1997.15

Stisen, S. and Sandholt, I.: Evaluation of remote-sensing-based rainfall products through
predictive capability in hydrological runoff modelling, Hydrol. Process., 24, 879–891,
doi:10.1002/hyp.7529, 2010.

Tang, Q., Gao, H., Lu, H., and Lettenmaier, D. P.: Remote sensing: hydrology, Prog. Phys.
Geogr., 33, 490–509, doi:10.1177/0309133309346650, 2009.20

USGS: Global Land Cover Characteristics Data Base Version 2.0, available at: http://edc2.
usgs.gov/glcc/glcc.php (last access: 16 July 2014), 2008.

Wolski, P., Stone, D., Tadross, M., Wehner, M., and Hewitson, B.: Attribution of floods in the Oka-
vango Basin, Southern Africa, J. Hydrol., 511, 350–358, doi:10.1016/j.jhydrol.2014.01.055,
201425

11095

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/11071/2014/hessd-11-11071-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/11071/2014/hessd-11-11071-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.emc.ncep.noaa.gov/index.php?branch=GFS
http://www.emc.ncep.noaa.gov/index.php?branch=GFS
http://www.emc.ncep.noaa.gov/index.php?branch=GFS
http://dx.doi.org/10.1175/JHM-D-13-0188.1
http://dx.doi.org/10.1175/JHM-D-13-0188.1
http://dx.doi.org/10.1175/JHM-D-13-0188.1
http://dx.doi.org/10.1029/2008WR007590
http://dx.doi.org/10.1175/1520-0477(1997)078%3C2837:AOOTGH%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1997)078%3C2837:AOOTGH%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1997)078%3C2837:AOOTGH%3E2.0.CO;2
http://dx.doi.org/10.1002/hyp.7529
http://dx.doi.org/10.1177/0309133309346650
http://edc2.usgs.gov/glcc/glcc.php
http://edc2.usgs.gov/glcc/glcc.php
http://edc2.usgs.gov/glcc/glcc.php
http://dx.doi.org/10.1016/j.jhydrol.2014.01.055


HESSD
11, 11071–11108, 2014

Operational river
discharge forecasting

in poorly gauged
basins: the Kavango

River case study

P. Bauer-Gottwein et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 1. Model calibration parameters. Subcatchment IDs for the various regions: r = 2+3+5+
6+7+9+10; m = 1+4+8+11+12; ru = 2+3; rd = 5+6+7+9+10; mu = 1; md = 4+8+11+12;
ruh = HRUs in region ru with terrain slope above 2 %; rul = HRUs in region ru with terrain slope
below 2 %; rdh = HRUs in region rd with terrain slope above 2 %; rdl = HRUs in region rd with
terrain slope below 2 %; muh = HRUs in region mu with terrain slope above 2 %; mul = HRUs
in region mu with terrain slope below 2 %; mdh = HRUs in region md with terrain slope above
2 %; mdl = HRUs in region md with terrain slope below 2 %.

Parameter Description and unit Lower Region Calibrated Upper
bound value bound

CN2_m Multiplier on the SCS curve number 0.6 r 0.63 1.2
for moisture condition II (dimensionless) m 0.65

ESCO Soil evaporative compensation factor 0.5 r 0.95 1
(dimensionless) m 0.80

EPCO Plant uptake compensation factor 0.5 r 0.89 1
(dimensionless) m 0.92

CH_N1 Manning’s n for tributary channels 0.02 r 0.185 0.2

(sm−1/3) m 0.023
CH_N2 Manning’s n for main reaches 0.02 r 0.023 0.2

(sm−1/3) m 0.104
GW_DELAY Groundwater delay (days) 30 ru 81.3 120

rd 43.4
mu 101.6
md 112.8

ALPHA_BF Base flow recession constant 0.05 ruh 0.676 1
(dimensionless) rul 0.177

rdh 0.221
rdl 0.730
muh 0.846
mul 0.264
mdh 0.161
mdl 0.080

GW_REVAP Groundwater re-evaporation 0 ruh 0.81 1
coefficient (dimensionless) rul 0.90

rdh 0.68
rdl 0.53
muh 0.75
mul 0.86
mdh 0.90
mdl 0.26

REVAPMN Threshold depth of water in shallow 0 ruh 103 200
aquifer for re-evaporation to occur (mm) rul 29

rdh 75
rdl 31
muh 15
mul 100
mdh 97
mdl 26

LOSS_11 Fractional loss from the Kavango River 0 0.011 0.2
between Rundu and Mohembo, due to
evaporation, infiltration and abstraction (dimensionless)
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Table 2. Model performance for calibration and validation periods. Numbers in brackets are
percent of mean observed flow.

In-situ NSE RMSE ME Mean of No. of
station (–) (m3 s−1) (m3 s−1) observations simulated

(m3 s−1) observations

Calibration Period (2005–2011)

Rundu 0.73 105.6 (42.5 %) −5.4 (−2.2 %) 248.4 2440
Mohembo 0.69 97.1 (32.8 %) 6.8 (2.3 %) 295.9 1935

Validation Period (2012–2014)

Rundu 0.71 100.8 (35.0 %) −59.3 (−20.6 %) 288.2 454
Mohembo 0.33 144.0 (30.7 %) −119.0 (−25.4 %) 469.1 46
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Table 3. Performance of the operational model in the calibration and validation periods.

Period In-situ Run NSE RMSE ME Cove- Sharp- Interval Mean of No. of
station (–) (m3 s−1) (m3 s−1) rage ness Skill predicted predicted

(%) (m3 s−1) Score observations obser-
(m3 s−1) (m3 s−1) vations

C
al

ib
ra

tio
n

P
er

io
d

(2
00

5–
20

11
)

R
un

du
Open-Loop 0.73 105.6 −5.4 90.0 423.5 654.9 248.4 2440
Assimilation 0.99 22.9 −0.9 88.6 54.1 147.1 248.4 2440
1 day ahead 0.98 29.2 −0.3 86.7 64.4 196.3 248.5 2440
2 day ahead 0.97 36.5 0.5 85.8 75.6 250.8 248.7 2439
3 day ahead 0.95 44.0 1.3 84.5 86.7 307.5 248.9 2438
4 day ahead 0.94 51.2 2.2 83.6 97.2 362.0 249.1 2437
5 day ahead 0.92 57.9 3.1 83.3 106.9 415.2 249.3 2436
6 day ahead 0.90 64.1 4.0 82.6 115.8 465.5 249.4 2435
7 day ahead 0.88 69.9 4.9 81.9 124.0 511.5 249.6 2434

M
oh

em
bo

Open-Loop 0.69 97.1 6.8 93.3 478.2 638.1 295.9 1935
Assimilation 0.93 45.1 −11.3 93.3 154.5 251.2 295.9 1935
1 day ahead 0.93 45.2 −11.2 93.3 154.5 251.7 295.9 1935
2 day ahead 0.93 45.1 −11.1 93.4 154.6 249.3 296.0 1934
3 day ahead 0.93 45.0 −11.0 93.4 154.7 246.9 296.0 1933
4 day ahead 0.93 44.9 −10.9 93.5 154.8 244.7 296.1 1932
5 day ahead 0.93 44.8 −10.8 93.5 154.9 242.4 296.2 1931
6 day ahead 0.93 44.8 −10.6 93.4 155.2 240.2 296.3 1930
7 day ahead 0.93 45.0 −10.4 93.3 155.5 238.4 296.4 1929

V
al

id
at

io
n

P
er

io
d

(2
01

2–
20

14
)

R
un

du

Open-Loop 0.71 100.8 −59.3 95.6 370.8 428.4 288.2 454
Assimilation 0.98 26.0 0.05 92.1 58.0 151.0 288.2 454
1 day ahead 0.97 34.9 0.9 90.2 68.1 221.0 293.6 438
2 day ahead 0.94 44.4 1.8 88.1 78.5 298.7 296.4 429
3 day ahead 0.92 53.5 2.6 87.1 88.3 374.7 296.6 426
4 day ahead 0.89 61.6 3.2 86.3 97.6 441.4 297.3 422
5 day ahead 0.87 68.7 3.8 85.3 106.7 501.3 298.8 416
6 day ahead 0.84 74.3 4.2 84.3 114.6 545.8 298.9 413
7 day ahead 0.83 78.8 4.4 83.9 121.9 576.7 298.7 411

M
oh

em
bo

Open-Loop 0.33 144.0 −119 93.5 498.4 686.7 469.1 46
Assimilation 0.92 48.4 −9.0 80.4 176.3 206.5 469.1 46
1 day ahead 0.92 48.7 −7.6 81.8 178.3 209.5 478.9 44
2 day ahead 0.92 49.0 −8.0 82.2 177.3 208.2 473.4 45
3 day ahead 0.92 49.9 −7.4 81.8 178.5 210.6 480.4 44
4 day ahead 0.91 51.2 −7.5 79.5 178.6 213.6 481.4 44
5 day ahead 0.91 52.3 −6.9 79.5 178.9 218.0 481.1 44
6 day ahead 0.91 52.7 −7.8 76.6 176.4 233.0 464.2 47
7 day ahead 0.92 52.1 −8.4 79.2 175.2 255.7 449.0 48
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Table 4. Performance indicators for the forecasts issued for the station Rundu in the validation
period, excluding model “warm-up” periods.

Run NSE RMSE Cove- Sharp- Interval Persistence CRPS No. of
(–) (m3 s−1) rage ness Skill Score index (–) predicted

(%) (m3 s−1) (m3 s−1) (–) observations

Open-Loop 0.73 102.3 96.2 366.5 395.63 39.2 394
Assimilation 0.99 19.5 96.4 57.0 77.3 6.7 394
1 day ahead 0.98 25.1 95.0 66.8 107.5 −5.81 8.9 379
2 day ahead 0.97 31.3 94.1 76.6 142.6 −1.73 11.4 371
3 day ahead 0.96 37.3 93.5 85.6 180.5 −0.77 13.8 369
4 day ahead 0.95 43.1 92.9 94.3 216.7 −0.37 16.3 366
5 day ahead 0.94 48.5 91.7 102.7 252.5 −0.13 18.6 361
6 day ahead 0.93 53.2 90.8 109.9 280.3 0.03 20.6 359
7 day ahead 0.92 57.1 90.8 116.4 300.9 0.16 22.4 358
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 613 

Figures 614 

 615 

Figure 1: Basemap for the Kavango River Basin with location of in-situ discharge stations. The coordinate system is UTM 616 
33S, WGS84 datum. 617 

  618 

Figure 1. Basemap for the Kavango River Basin with location of in-situ discharge stations. The
coordinate system is UTM 33S, WGS84 datum.
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 619 
Figure 2: Double mass plot of the FEWS-RFE and NOAA-GFS precipitation products averaged over the entire Kavango 620 
River basin 621 
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Figure 2. Double mass plot of the FEWS-RFE and NOAA-GFS precipitation products averaged
over the entire Kavango River Basin.
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 623 

 624 
Figure 3: Observed (red dots) and simulated (black lines) hydrographs for the calibration period for Rundu (top) and 625 
Mohembo (bottom).  626 
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Figure 3. Observed (red dots) and simulated (black lines) hydrographs for the calibration period
for Rundu (top panel) and Mohembo (bottom panel).
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 628 
Figure 4: Observed (red dots) and simulated (black lines) hydrographs for the validation period for Rundu (top) and 629 
Mohembo (bottom).  630 
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Figure 4. Observed (red dots) and simulated (black lines) hydrographs for the validation period
for Rundu (top panel) and Mohembo (bottom panel).
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 632 
Figure 5: a) Relative error of the hydrologic-hydrodynamic model vs observed discharge. b) Q-Q plot of the relative errors 633 
shown in a). c) Correlogram of the relative errors shown in a). d) Relative errors of hydrologic-hydrodynamic model after 634 
removal of the time-correlated part plotted vs observed discharge. e) Q-Q plot of the relative errors shown in d). f) 635 
Correlogram of the relative errors shown in d). 636 
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Figure 5. (a) Relative error of the hydrologic–hydrodynamic model vs. observed discharge.
(b) Q–Q plot of the relative errors shown in (a). (c) Correlogram of the relative errors shown in
(a). (d) Relative errors of hydrologic–hydrodynamic model after removal of the time-correlated
part plotted vs. observed discharge. (e) Q–Q plot of the relative errors shown in (d). (f) Correl-
ogram of the relative errors shown in (d).
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 638 
Figure 6: Probabilistic simulation of river discharge in the open-loop and assimilated run for the calibration and the 639 
validation periods for the station Rundu. 640 
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Figure 6. Probabilistic simulation of river discharge in the open-loop and assimilated run for the
calibration and the validation periods for the station Rundu.
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 642 

 643 
Figure 7: Performance of the 0-7 day ahead probabilistic forecasts in the validation period at Rundu station. The black solid 644 
line is the central forecast. Grey shading indicates the 95% confidence interval of the forecast and red dots are observations. 645 
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Figure 7. Performance of the 0–7 day ahead probabilistic forecasts in the validation period
at Rundu station. The black solid line is the central forecast. Grey shading indicates the 95 %
confidence interval of the forecast and red dots are observations.
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 647 
Figure 8: Graphical illustration of performance statistics listed in Table 3. Bars indicate performance of the 0-7 ahead 648 
forecasts while dashed lines indicate the performance of the open-loop run. Colors refer to the two in-situ stations and the 649 
calibration and validation periods respectively. 650 
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Figure 8. Graphical illustration of performance statistics listed in Table 3. Bars indicate perfor-
mance of the 0–7 ahead forecasts while dashed lines indicate the performance of the open-loop
run. Colors refer to the two in-situ stations and the calibration and validation periods respec-
tively.
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 652 
Figure 9: Graphical illustration of the PI and CRPS scores reported in Table 4 for the station Rundu. The dashed line 653 
indicates the performance of the open-loop run. 654 
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Figure 9. Graphical illustration of the PI and CRPS scores reported in Table 4 for the station
Rundu. The dashed line indicates the performance of the open-loop run.
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